A Low-Integrated-Phase-Noise 27-30-GHz Injection-Locked Frequency Multiplier With an Ultra-Low-Power Frequency-Tracking Loop for mm-Wave-Band 5G Transceivers

Cited 43 time in webofscience Cited 38 time in scopus
  • Hit : 302
  • Download : 0
An ultra-low-phase-noise injection-locked frequency multiplier (ILFM) for millimeter wave (mm-wave) fifth-generation transceivers is presented. Using an ultra-low-power frequency-tracking loop (FTL), the proposed ILFM is able to correct the frequency drifts of the quadrature voltage-controlled oscillator of the ILFM in a real-time fashion. Since the FTL is monitoring the averages of phase deviations rather than detecting or sampling the instantaneous values, it requires only 600 mu W to continue to calibrate the ILFM that generates an mm-wave signal with an output frequency from 27 to 30 GHz. The proposed ILFM was fabricated in a 65-nm CMOS process. The 10-MHz phase noise of the 29.25-GHz output signal was -129.7 dBc/Hz, and its variations across temperatures and supply voltages were less than 2 dB. The integrated phase noise from 1 kHz to 100 MHz and the rms jitter were -39.1 dBc and 86 fs, respectively.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-02
Language
English
Article Type
Article
Citation

IEEE JOURNAL OF SOLID-STATE CIRCUITS, v.53, no.2, pp.375 - 388

ISSN
0018-9200
DOI
10.1109/JSSC.2017.2749420
URI
http://hdl.handle.net/10203/264097
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 43 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0