Label-Free Detection of DNA Hybridization Using Pyrene-Functionalized Single-Walled Carbon Nanotubes: Effect of Chemical Structures of Pyrene Molecules on DNA Sensing Performance

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 638
  • Download : 15
We investigate the effect of functional groups of pyrene molecules on the electrical sensing performance of single-walled carbon nanotubes (SWNTs) based DNA biosensor, in which pyrenes with three different functional groups of carboxylic acid (Py-COOH), aldehyde (Py-CHO) and amine (Py-NH2) are used as linker molecules to immobilize DNA on the SWNT films. UV/Visible absorption spectra results show that all of the pyrene molecules are successfully immobilized on the SWNT surface via pi-pi stacking interaction. Based on fluorescence analysis, we show that the amide bonding of amine terminated DNA via pyrene containing carboxylic groups is the most efficient to immobilize DNA on the nanotube film. The electrical detection results show that the conductance of Py-COOH modified SWNT film is increased upon DNA immobilization, followed by further increase after hybridization of target DNAs. It indicates that the pyrene molecules with carboxylic acid groups play an important role to achieve highly efficient label-free detection by nondestructive and specific immobilization of DNAs.
Publisher
AMER SCIENTIFIC PUBLISHERS
Issue Date
2011-05
Language
English
Article Type
Article; Proceedings Paper
Citation

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.11, no.5, pp.4210 - 4216

ISSN
1533-4880
URI
http://hdl.handle.net/10203/98208
Appears in Collection
EE-Journal Papers(저널논문)CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0