Water-Stable and Photo-Patternable Siloxane-Encapsulated Upconversion Nanoparticles toward Flexible Near-Infrared Phototransistors

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 194
  • Download : 0
Upconversion nanoparticles (UCNPs), as near-infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large-area integrated devices, water stability and micro-patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol-gel process to enable photo-patternability and photo-stabililty in water conditions. The UCNP@SiOx can be photo-patterned down to micron-scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non-toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W-1) and specific detectivity (2.22 x 10(7) Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re-stretch test. This work opens the way for the facile synthesis of water-stable and photo-patternable siloxane-encapsulated UCNPs and a strategy for fabricating high-performance flexible NIR phototransistors through wavelength conversion.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2023-06
Language
English
Article Type
Article
Citation

ADVANCED OPTICAL MATERIALS, v.11, no.12

ISSN
2195-1071
DOI
10.1002/adom.202202469
URI
http://hdl.handle.net/10203/310118
Appears in Collection
MS-Journal Papers(저널논문)EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0