SOT-MRAM Digital PIM Architecture With Extended Parallelism in Matrix Multiplication

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 368
  • Download : 0
Emerging device-based digital processing-in-memory (PIM) architectures have been actively studied due to their energy and area efficiency derived from analog to digital converter (ADC)-less PIM hardware. However, digital PIM architectures generally need large extra memories to copy parameters, and they also suffer from low computation per memory-cycle efficiencies. In this paper, we present a novel spin-orbit torque magnetic random access memory (SOT-MRAM) based digital PIM architecture to alleviate the extra memory size burden and computation cycle issues. First, we propose the spintronics-assisted logic-in-memory (SLIM) cells to support efficient digital logic operations inside memories, where the voltage-controlled magnetic anisotropy (VCMA) is exploited to enhance the computation per memory-cycle efficiencies. In addition, crossed input source PIM (CRISP) architecture is proposed to extend the merits of SLIM cells by eliminating the extra memories for parameter copying while significantly improving the degree of parallel processing. An intra-memory pipelining scheme is also considered to further increase the throughput of CRISP. The proposed CRISP architecture has been implemented using 28 nm CMOS process, and it presents 1.10 TOPS/W and 0.95 TOPS/mm(2), showing considerable improvements of energy efficiency and throughput per area, compared to the state-of-the-art digital PIM architecture. Finally, to evaluate the impact of computation errors induced from the SOT devices and circuits in CRISP architecture, classification accuracy simulations have been performed while applying computation errors.
Publisher
IEEE COMPUTER SOC
Issue Date
2022-11
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMPUTERS, v.71, no.11, pp.2816 - 2828

ISSN
0018-9340
DOI
10.1109/TC.2022.3155277
URI
http://hdl.handle.net/10203/299100
Appears in Collection
MS-Journal Papers(저널논문)PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0