Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing

Cited 36 time in webofscience Cited 0 time in scopus
  • Hit : 528
  • Download : 80
DC FieldValueLanguage
dc.contributor.authorKim, Jin-Ohko
dc.contributor.authorKoo, Won-Taeko
dc.contributor.authorKim, Hanulko
dc.contributor.authorPark, Chungseongko
dc.contributor.authorLee, Taehoonko
dc.contributor.authorHutomo, Calvin Andreasko
dc.contributor.authorChoi, Siyoung Q.ko
dc.contributor.authorKim, Dong Sooko
dc.contributor.authorKim, Il-Dooko
dc.contributor.authorPark, Steveko
dc.date.accessioned2021-08-09T06:50:11Z-
dc.date.available2021-08-09T06:50:11Z-
dc.date.created2021-08-09-
dc.date.created2021-08-09-
dc.date.created2021-08-09-
dc.date.created2021-08-09-
dc.date.issued2021-07-
dc.identifier.citationNATURE COMMUNICATIONS, v.12, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/287086-
dc.description.abstractConductive metal-organic framework (C-MOF) thin-films have a wide variety of potential applications in the field of electronics, sensors, and energy devices. The immobilization of various functional species within the pores of C-MOFs can further improve the performance and extend the potential applications of C-MOFs thin films. However, developing facile and scalable synthesis of high quality ultra-thin C-MOFs while simultaneously immobilizing functional species within the MOF pores remains challenging. Here, we develop microfluidic channel-embedded solution-shearing (MiCS) for ultra-fast (<= 5mm/s) and large-area synthesis of high quality nanocatalyst-embedded C-MOF thin films with thickness controllability down to tens of nanometers. The MiCS method synthesizes nanoscopic catalyst-embedded C-MOF particles within the microfluidic channels, and simultaneously grows catalyst-embedded C-MOF thin-film uniformly over a large area using solution shearing. The thin film displays high nitrogen dioxide (NO2) sensing properties at room temperature in air amongst two-dimensional materials, owing to the high surface area and porosity of the ultra-thin C-MOFs, and the catalytic activity of the nanoscopic catalysts embedded in the C-MOFs. Therefore, our method, i.e. MiCS, can provide an efficient way to fabricate highly active and conductive porous materials for various applications. The immobilization of catalysts within the pores of conductive metal-organic frameworks (C-MOFs) via facile and scalable methodologies remains challenging. Here the authors report a microfluidic channel-embedded solution shearing process that enables the high throughput, large-area, single-step preparation of Pt nanocatalyst-embedded C-MOF thin films.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleLarge-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing-
dc.typeArticle-
dc.identifier.wosid000675656600028-
dc.identifier.scopusid2-s2.0-85110411096-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-021-24571-1-
dc.contributor.localauthorChoi, Siyoung Q.-
dc.contributor.localauthorKim, Il-Doo-
dc.contributor.localauthorPark, Steve-
dc.contributor.nonIdAuthorLee, Taehoon-
dc.contributor.nonIdAuthorHutomo, Calvin Andreas-
dc.contributor.nonIdAuthorKim, Dong Soo-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusPLATINUM NANOPARTICLES-
dc.subject.keywordPlusSENSING PERFORMANCE-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusCRYSTALS-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusSENSORS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0