Nanopores of carbon nanotubes as practical hydrogen storage media

Cited 46 time in webofscience Cited 35 time in scopus
  • Hit : 578
  • Download : 795
DC FieldValueLanguage
dc.contributor.authorHan, Sangsooko
dc.contributor.authorKim, HSko
dc.contributor.authorHan, KSko
dc.contributor.authorLee, JYko
dc.contributor.authorLee, HyuckMoko
dc.contributor.authorKang, Jeung Kuko
dc.contributor.authorWoo, Seong-Ihlko
dc.contributor.authorvan Duin, ACTko
dc.contributor.authorGoddard, WAko
dc.date.accessioned2011-01-24T02:05:49Z-
dc.date.available2011-01-24T02:05:49Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2005-11-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.87, no.21, pp. 213113 - 213113-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/21762-
dc.description.abstractWe report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300-350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications. (c) 2005 American Institute of Physics.-
dc.description.sponsorshipThis research was supported by the research program of KOSEF Grant No. R012005000103330 and the Center for Ultramicrochemical Process Systems CUPS sponsored by KOSEF 2005.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherAMER INST PHYSICS-
dc.subjectADSORPTION-
dc.titleNanopores of carbon nanotubes as practical hydrogen storage media-
dc.typeArticle-
dc.identifier.wosid000233362300080-
dc.identifier.scopusid2-s2.0-27844477864-
dc.type.rimsART-
dc.citation.volume87-
dc.citation.issue21-
dc.citation.beginningpage213113-
dc.citation.endingpage213113-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.2133928-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, HyuckMo-
dc.contributor.localauthorKang, Jeung Ku-
dc.contributor.localauthorWoo, Seong-Ihl-
dc.contributor.nonIdAuthorKim, HS-
dc.contributor.nonIdAuthorHan, KS-
dc.contributor.nonIdAuthorLee, JY-
dc.contributor.nonIdAuthorvan Duin, ACT-
dc.contributor.nonIdAuthorGoddard, WA-
dc.type.journalArticleArticle-
dc.subject.keywordPlusADSORPTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0