Integrated centrifugal reverse transcriptase loop-mediated isothermal amplification microdevice for influenza A virus detection

Cited 55 time in webofscience Cited 55 time in scopus
  • Hit : 353
  • Download : 253
An integrated reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) microdevice which consists of microbead-assisted RNA purification and RT-LAMP with real-time monitoring by a miniaturized optical detector was demonstrated. The integrated RT-LAMP microdevice includes four reservoirs for a viral RNA sample (purified influenza A viral RNA or lysates), a washing solution (70% ethanol), an elution solution (RNase-free water), and an RT-LAMP cocktail, and two chambers (a waste chamber and an RT-LAMP reaction chamber). The separate reservoirs for a washing solution, an elution solution, and an RT-LAMP cocktail were designed with capillary valves for stable storage. Three influenza A virus strains (A/H1N1, A/H3N2, and A/H5N1) were used for RNA templates, and RT-LAMP primer sets were designed to detect hemagglutinin (HA) and conserved M gene. Sequential sample flow to the microbeads for RNA purification was achieved by centrifugal force with optimization of capillary valves and a siphon channel. Furthermore, the purified RNA solution was successfully isolated from the waste solution by changing the rotational direction, and combined with the RT-LAMP cocktail in the RT-LAMP reaction chamber for target gene amplification. Total process from the sample injection to the result was completed in 47 min. Influenza A H1N1 virus was confirmed on the integrated RT-LAMP microdevice even with 10 copies of viral RNAs, which revealed 10-fold higher sensitivity than that of a conventional RT-PCR. Subtyping and specificity test of influenza A H1N1 viral lysates were also performed and clinical samples were successfully genotyped to confirm influenza A virus on our proposed integrated microdevice.
Publisher
ELSEVIER ADVANCED TECHNOLOGY
Issue Date
2015-06
Language
English
Article Type
Article
Keywords

RAPID DETECTION; WHOLE-BLOOD; MICROFLUIDIC PLATFORM; SAMPLE PRETREATMENT; DNA AMPLIFICATION; REAL-TIME; EXTRACTION; SYSTEM; DEVICE; LAMP

Citation

BIOSENSORS & BIOELECTRONICS, v.68, pp.218 - 224

ISSN
0956-5663
DOI
10.1016/j.bios.2014.12.043
URI
http://hdl.handle.net/10203/198207
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 55 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0