Chip warpage model for reliability prediction of delamination failures

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 289
  • Download : 0
A new experimental method to predict reliability for ACA type packages under temperature cycling is developed and proposed. The method introduces a new damage parameter that can be easily measured by experiment. It is proved that the linear elastic parameter, dw/dT which represents the rate of change of chip warpage with respect to temperature, efficiently reflects the common failure mechanism of ACA type packages, the interfacial delamination between the chip and the adhesive. It is demonstrated, both experimentally and numerically, that the size of delamination affects the warpage behavior of the chip. The dw/dT of the chip is monitored in real time using laser interferometers under thermal fatigue cycles up to 3000. The gradual decrease in warpage due to progressive increase in delamination is clearly emerged. As a result, a reliability curve that can predict the size of delamination and remained life is obtained. The new long-term reliability prediction method developed in this study can be applied to various advanced packages, e.g. underfilled flip-chip or TSV stacked chip packages, that embrace interfacial delamination as primary failure mode. (C) 2011 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2012-04
Language
English
Article Type
Article
Keywords

ANISOTROPICALLY CONDUCTIVE ADHESIVE; FLIP-CHIP; ELECTRONIC PACKAGES; CONTACT RESISTANCE; THERMAL-STRESSES; FILM ACF; MECHANISM; JOINTS; TECHNOLOGY; ASSEMBLIES

Citation

MICROELECTRONICS RELIABILITY, v.52, no.4, pp.718 - 724

ISSN
0026-2714
DOI
10.1016/j.microrel.2011.11.013
URI
http://hdl.handle.net/10203/98102
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0