A reconfigurable multilevel parallel texture cache memory with 75-GB/s parallel cache replacement bandwidth

Recently, the level of realism in PC graphics applications has been approaching that of high-end graphics workstations, necessitating a more sophisticated texture data cache memory to overcome the finite bandwidth of the AGP or PCI bus. This paper proposes a multilevel parallel texture cache memory to reduce the required data bandwidth on the AGP or PCI bus and to accelerate the operations of parallel graphics pipelines in PC graphics cards. The proposed cache memory is fabricated by 0.16-mum DRAM-based SOC technology. It is composed of four components: an 8-MB DRAM L2 cache, 8-way parallel SRAM L1 caches, pipelined texture data filters, and a serial-to-parallel loader. For high-speed parallel L1 cache data replacement, the internal bus bandwidth has been maximized up to 75 GB/s with a newly proposed hidden double data transfer scheme. In addition, the cache memory has a reconfigurable architecture in its line size for optimal caching performance in various graphics applications from three-dimensional (3-D) games to high-quality 3-D movies. This architecture also leads to optimal power consumption with an adaptive sub-wordline activation scheme. The pipelined texture data filters and the dedicated structure of the L1 caches implemented by the DRAM peripheral transistors show the potential of DRAM-based SOC design with better performance-to-cost ratio.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2002-05
Language
ENG
Keywords

ARCHITECTURE

Citation

IEEE JOURNAL OF SOLID-STATE CIRCUITS, v.37, no.5, pp.612 - 623

ISSN
0018-9200
URI
http://hdl.handle.net/10203/6276
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
sjpJSSC2002.pdf(484.31 kB)Download
  • Hit : 357
  • Download : 118
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 2 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0