Spin-Orbit Torque and Magnetic Damping in Tailored Ferromagnetic Bilayers

Cited 12 time in webofscience Cited 8 time in scopus
  • Hit : 164
  • Download : 0
We study spin-orbit-torque-driven ferromagnetic resonance (FMR) in ferromagnetic (FM) bilayers, consisting of Co and permalloy (Py) sandwiched between Pt and MgO layers. We find that the FM layer in contact with the Pt layer dominantly determines the spin Hall angle, which is consistent with the spin-transparency model. By contrast, the FMR linewidths are considerably influenced not only by the spin-pumping effect across the Pt/FM interface but also by the spin relaxation such as two-magnon scattering at the FM/MgO interface. The Co/MgO interface leads to notably increased FMR linewidths, while the Py/MgO interface has less effect. The different contributions of each interface to the spin Hall angle and dissipation parameter suggest that the stack configuration of Pt/Co/Py/MgO requires less writing energy than Pt/Py/Co/MgO in spin-orbit-torque-driven magnetic switching. Our approach offers a practical method to optimize material parameters by engineering either interfaces in contact with the heavy metal or the oxide layer.
Publisher
AMER PHYSICAL SOC
Issue Date
2018-08
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW APPLIED, v.10, no.2

ISSN
2331-7019
DOI
10.1103/PhysRevApplied.10.024029
URI
http://hdl.handle.net/10203/277415
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0