Deep learning-based optical field screening for robust optical diffraction tomography

Cited 16 time in webofscience Cited 10 time in scopus
  • Hit : 459
  • Download : 222
DC FieldValueLanguage
dc.contributor.authorRyu, DongHunko
dc.contributor.authorJo, YoungJuko
dc.contributor.authorYoo, Jihyeongko
dc.contributor.authorChang, Taeanko
dc.contributor.authorAhn, Daewoongko
dc.contributor.authorKim, Young Seoko
dc.contributor.authorKim, Geonko
dc.contributor.authorMin, Hyun-Seokko
dc.contributor.authorPark, YongKeunko
dc.date.accessioned2019-11-11T06:20:43Z-
dc.date.available2019-11-11T06:20:43Z-
dc.date.created2019-11-11-
dc.date.created2019-11-11-
dc.date.created2019-11-11-
dc.date.created2019-11-11-
dc.date.issued2019-10-
dc.identifier.citationSCIENTIFIC REPORTS, v.9, pp.15239-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/10203/268329-
dc.description.abstractIn tomographic reconstruction, the image quality of the reconstructed images can be significantly degraded by defects in the measured two-dimensional (2D) raw image data. Despite the importance of screening defective 2D images for robust tomographic reconstruction, manual inspection and rule-based automation suffer from low-throughput and insufficient accuracy, respectively. Here, we present deep learning-enabled quality control for holographic data to produce robust and high-throughput optical diffraction tomography (ODT). The key idea is to distil the knowledge of an expert into a deep convolutional neural network. We built an extensive database of optical field images with clean/noisy annotations, and then trained a binary-classification network based upon the data. The trained network outperformed visual inspection by non-expert users and a widely used rule-based algorithm, with >90% test accuracy. Subsequently, we confirmed that the superior screening performance significantly improved the tomogram quality. To further confirm the trained model's performance and generalisability, we evaluated it on unseen biological cell data obtained with a setup that was not used to generate the training dataset. Lastly, we interpreted the trained model using various visualisation techniques that provided the saliency map underlying each model inference. We envision the proposed network would a powerful lightweight module in the tomographic reconstruction pipeline.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleDeep learning-based optical field screening for robust optical diffraction tomography-
dc.typeArticle-
dc.identifier.wosid000491859500029-
dc.identifier.scopusid2-s2.0-85074093142-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.beginningpage15239-
dc.citation.publicationnameSCIENTIFIC REPORTS-
dc.identifier.doi10.1038/s41598-019-51363-x-
dc.contributor.localauthorPark, YongKeun-
dc.contributor.nonIdAuthorRyu, DongHun-
dc.contributor.nonIdAuthorJo, YoungJu-
dc.contributor.nonIdAuthorYoo, Jihyeong-
dc.contributor.nonIdAuthorAhn, Daewoong-
dc.contributor.nonIdAuthorKim, Young Seo-
dc.contributor.nonIdAuthorMin, Hyun-Seok-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNOISE-REDUCTION-
dc.subject.keywordPlusRECONSTRUCTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0