A Low-power, Mixed-mode Neural Network Classifier for Robust Scene Classification

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 7
  • Download : 0
A low-power neural network classifier processor is proposed for real-time mobile scene classification. It has analog-digital mixed-mode architecture to save power and area while preserving fast operation speed and high classification accuracy. Its current-mode analog datapath replaces massive digital computations such as multiply-accumulate and look-up table operations, which saves area and power by 84.0% and 82.2% than those of digital ASIC implementation. Moreover, the processor integrates a multi-modal and highly controllable radial basis function circuit that compensates for the environmental noise to make the processor maintain high classification accuracy despite of temperature and supply voltage variations, which are critical in mobile devices. In addition, its reconfigurable architecture supports both multi-layer perceptron and radial basis function network. The proposed processor fabricated in 0.13 mu m CMOS process occupies 0.14 mm(2) with 2.20 mW average power consumption and attains 92% classification accuracy.
Publisher
IEEK PUBLICATION CENTER
Issue Date
2019-02
Language
English
Article Type
Article
Citation

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, v.19, no.1, pp.129 - 136

ISSN
1598-1657
DOI
10.5573/JSTS.2019.19.1.129
URI
http://hdl.handle.net/10203/261852
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0