Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 139
  • Download : 0
Here, we report a comprehensive study that combines in situ scanning electron microscopy experiments and atomistic simulations to quantify the effect of crystal size on the transformation in deformation modes in a-axis oriented Mg single crystals at room temperature. The experimental results indicate that the deformation is dominated by the nucleation and propagation of tensile twins. The stress required for twin propagation was found to increase with decreasing sample size, showing a typical “smaller is stronger” behavior. Furthermore, an anomalous increase in strain hardening is first reported for microcrystals having diameters larger than ∼18 μm, which is induced by twin-twin and dislocation-twin interactions. The hardening rate gradually decreases toward the bulk response as the microcrystal size increases. Below 18 μm, deformation is dominated by the nucleation and propagation of a single tensile twin followed by basal slip activity in the twinned crystal, leading to no apparent hardening. In addition, molecular dynamics simulations indicate a transition from twinning mediated plasticity to dislocation mediated plasticity for crystal sizes below a few hundred nanometers in size. A deformation mechanism map for twin oriented Mg single crystals, ranging from the nano-scale to bulk scale is proposed based on the current simulations and experiments. The current predicted size-affected deformation mechanism of twin oriented Mg single crystals can lead to better understanding of the competition between dislocations plasticity and twinning plasticity.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2018-02
Language
English
Article Type
Article
Keywords

CLOSE-PACKED MAGNESIUM; THIN CU FILMS; SINGLE-CRYSTALS; GRAIN-SIZE; ROOM-TEMPERATURE; HCP METALS; POLYCRYSTALLINE MAGNESIUM; YIELD STRENGTH; PYRAMIDAL SLIP; NONBASAL SLIP

Citation

ACTA MATERIALIA, v.144, pp.11 - 20

ISSN
1359-6454
DOI
10.1016/j.actamat.2017.10.033
URI
http://hdl.handle.net/10203/240205
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0