Structural Optimization of a Novel 6-DOF Pose Sensor System for Enhancing Noise Robustness at a Long Distance

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 384
  • Download : 29
In this paper, structural optimization of a sensor fusion system is newly presented to minimize noise sensitivity, thus maximizing the noise robustness in measuring 6-degree-of-freedom (6-DOF) poses of an object at a long distance with higher precision. The target sensor system, the so-called three-beam detector, is composed of three 1-D laser sensors and a vision camera. During the nonlinear computation, 6-DOF poses can be affected by sensor noises along with sensor configuration. Design parameters such as alignment angles, width, and height of the laser sensors are optimized in the sensor configuration that can minimize an objective function of the 6-DOF pose errors due to the sensor noise. To show sensing performance against the sensor noises, the sensing precision of the optimally configured system is compared with that of the parallel configuration system through numerical simulations and experiments. The proposed process of optimizing sensor configuration can be also applied to other sensor fusion systems to minimize the noise sensitivity.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2014-10
Language
English
Article Type
Article
Keywords

GPS; STABILITY; DESIGN; LIGHT

Citation

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, v.61, no.10, pp.5622 - 5631

ISSN
0278-0046
DOI
10.1109/TIE.2013.2297307
URI
http://hdl.handle.net/10203/189941
Appears in Collection
GT-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0