A diesel-driven, metal-based solid oxide fuel cell

Cited 21 time in webofscience Cited 20 time in scopus
  • Hit : 586
  • Download : 11
This study examines the performance of a metal-based solid oxide fuel cell (SOFC) coupled with an integrated diesel fuel processor, with a focus on operating stability. The reformate is produced by an autothermal reformer (ATR), desulfurizer, and post-reformer using commercial diesel. Diesel reformate possesses the characteristics of low fuel concentration and high steam quantity due to its fuel processing condition for stable operation. These characteristics lead to high oxygen partial pressure at the anode which causes the oxidation of the cell's metallic component. Various approaches, such as thermodynamic calculation, temperature-programmed reduction (TPR) analysis, and the electrochemical performance of a single cell, are used to prove the oxidation phenomenon in this experiment. As a result, the key factors for stable operation are discovered, and a metal-based SOFC single stack with an area of 50-mm x 50-mm is successfully operated for 1000 h at a 4%/1000 h degradation rate under a modified condition of diesel reformate. To ensure the SOFC's stable operation using the reformate, it is recommended that the operating condition should be considered from a viewpoint combining fuel composition, oxygen partial pressure, and temperature. The modified condition for the long-term operation of a metal-based SOFC using diesel reformate is also suggested in this paper.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2014-03
Language
English
Article Type
Article
Keywords

SUPPORTED SOFCS; JOINING PROCESS; HYDROGEN; TECHNOLOGIES; INTERCONNECT; FABRICATION; GENERATION; CATALYST; ANODE

Citation

JOURNAL OF POWER SOURCES, v.250, pp.98 - 104

ISSN
0378-7753
DOI
10.1016/j.jpowsour.2013.10.100
URI
http://hdl.handle.net/10203/189441
Appears in Collection
AE-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0