Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization

Cited 655 time in webofscience Cited 0 time in scopus
  • Hit : 375
  • Download : 0
Bone tissue is a complex biocomposite material with a variety of organic (e.g., proteins, cells) and inorganic (e.g., hydroxyapatite crystals) components hierarchically organized with nano/microscale precision. Based on the understanding of such hierarchical organization of bone tissue and its unique mechanical properties, efforts are being made to mimic these organic inorganic hybrid biocomposites. A key factor for the successful designing of complex, hybrid biomaterials is the facilitation and control of adhesion at the interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, researchers have focused on controlling the interface by surface modifications, but the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials remains a critical challenge. Here, a universal biomineralization route, called polydopamine-assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated. Inspired by the adhesion mechanism of mussels, the pHAF method can readily integrate hydroxyapatites on ceramics, noble metals, semiconductors, and synthetic polymers, irrespective of their size and morphology (e.g., porosity and shape). Surface-anchored catecholamine moieties in polydopamine enriches the interface with calcium ions, facilitating the formation of hydroxyapatite crystals that are aligned to the c-axes, parallel to the polydopamine layer as observed in natural hydroxyapatites in mineralized tissues. This universal surface biomineralization can be an innovative foundation for future tissue engineering.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2010-07
Language
English
Article Type
Article
Keywords

ADHESIVE PROTEIN; ARTIFICIAL BONE; IN-VITRO; APATITE; POLYMERIZATION; DOPAMINE; SURFACES; FILMS; MINERALIZATION; NUCLEATION

Citation

ADVANCED FUNCTIONAL MATERIALS, v.20, no.13, pp.2132 - 2139

ISSN
1616-301X
DOI
10.1002/adfm.200902347
URI
http://hdl.handle.net/10203/97924
Appears in Collection
CH-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 655 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0