Synthesis and characterization of highly conductive Sn-Ag bimetallic nanoparticles for printed electronics

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 363
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJo, Yun-Hwanko
dc.contributor.authorJung, In-Yuko
dc.contributor.authorKim, Na-Raeko
dc.contributor.authorLee, Hyuck-Moko
dc.date.accessioned2013-03-08T17:23:04Z-
dc.date.available2013-03-08T17:23:04Z-
dc.date.created2012-06-15-
dc.date.created2012-06-15-
dc.date.issued2012-04-
dc.identifier.citationJOURNAL OF NANOPARTICLE RESEARCH, v.14, no.4, pp.782-1 - 782-10-
dc.identifier.issn1388-0764-
dc.identifier.urihttp://hdl.handle.net/10203/93739-
dc.description.abstractTo synthesize low-cost, highly conductive metal nanoparticles for inkjet printing materials, we synthesized Sn-Ag bimetallic nanoparticles using a polyol process with poly(vinyl pyrrolidone). Because a surface oxidation layer forms on Sn nanoparticles, various compositions of Sn-xAg [x = 0, 20, 40, 60, 80, 100 (wt%)] nanoparticles were synthesized and characterized for the purpose of removing the beta-Sn phase. The results of XPS, TEM, and XRD analyses confirm that the formation of a bimetallic phase, such as Ag4Sn or Ag3Sn, hinders the beta-Sn phase and, consequently, leads to the removal of the surface oxidation layer. To measure the sheet resistance of various compositions of Sn-Ag nanoparticles, we made the ink that contains Sn-Ag by dispersing 10 wt% of Sn-Ag nanoparticles in methanol. The sheet resistance is decreased by the conductive Sn-Ag phases, such as the fcc, Ag4Sn, and Ag3Sn phases, but sharply increased by the low-conductive Sn nanoparticles and the surface oxidation layer on the Sn nanoparticles. The sheet resistance results confirm that 80Ag20Sn and 60Ag40Sn bimetallic nanoparticles are suitable candidates for inkjet printing materials.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectDEPENDENT MELTING PROPERTIES-
dc.subjectPARTICLE-SIZE-
dc.subjectCATALYSTS-
dc.subjectINK-
dc.subjectALLOY-
dc.subjectHYDROGENATION-
dc.subjectNANOCRYSTALS-
dc.subjectTEMPERATURE-
dc.subjectTHICKNESS-
dc.subjectSURFACE-
dc.titleSynthesis and characterization of highly conductive Sn-Ag bimetallic nanoparticles for printed electronics-
dc.typeArticle-
dc.identifier.wosid000302641000024-
dc.identifier.scopusid2-s2.0-84862825892-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue4-
dc.citation.beginningpage782-1-
dc.citation.endingpage782-10-
dc.citation.publicationnameJOURNAL OF NANOPARTICLE RESEARCH-
dc.identifier.doi10.1007/s11051-012-0782-z-
dc.contributor.localauthorLee, Hyuck-Mo-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSn-Ag nanoparticles-
dc.subject.keywordAuthorConductive nanoparticles-
dc.subject.keywordAuthorConductive ink-
dc.subject.keywordAuthorPrinted electronics-
dc.subject.keywordAuthorNanomanufacturing-
dc.subject.keywordPlusDEPENDENT MELTING PROPERTIES-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusINK-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusHYDROGENATION-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusTHICKNESS-
dc.subject.keywordPlusSURFACE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0