웹기반 개인화 디자인 서비스를 위한 효과적인 추천 기법의 비교 연구Comparison of Recommendation Techniques for Web-based Design Personalization Service

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 431
  • Download : 0
본 연구는 다른 분야에서 성공적으로 활용되고 있는 다양한 추천 기법들을 비교하는 사례 연구를 통해 더욱 효과적인 디자인 개인화 서비스 개발의 기회를 모색하고자 하였다. 우선, 문헌연구를 통하여 ‘컨텐츠 기반 기법’, ‘협력적 필터링 기법’, 그리고 ‘인구통계적 필터링 기법’과 같은 대표적인 추천 기법들의 특징과 장단점을 고찰하였다. 다음으로 이러한 기법들이 디자인과 같은 컨텐츠를 대상으로 적용되었을 때 예상되는 추천 정확성을 분석하기 위해 실험을 실시하였다. 그 결과, 인구통계적 필터링 기법은 나머지 기법에 비해서 비교적 낮은 정확성을 보였으며 컨텐츠 기반 기법이 가장 좋은 높은 추천 정확성을 나타내었다. 아울러 협력적 필터링 기법은 참여자들의 수가 증가할수록 좀 더 높은 추천 정확성을 나타냄을 알 수 있었다. 결론적으로 디자인 추천 서비스는 컨텐츠 기반 기법이나 협력적 필터링 기법의 적용을 통해 그 추천 정확성을 향상시킬 수 있으며 대상 사용자의 수가 일정 수준 이상으로 증가된다면 협력적 필터링 기법이 가장 우수한 효율을 나타낼 가능성이 높음을 제시하였다.
Publisher
한국감성과학회
Issue Date
2006-09
Language
Korean
Citation

감성과학, v.9, no.3, pp.179 - 185

ISSN
1226-8593
URI
http://hdl.handle.net/10203/92036
Appears in Collection
ID-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0