Principle of ferroelectric domain imaging using atomic force microscope

Cited 287 time in webofscience Cited 275 time in scopus
  • Hit : 700
  • Download : 2067
DC FieldValueLanguage
dc.contributor.authorHong, Daniel Seungbumko
dc.contributor.authorWoo, Jko
dc.contributor.authorShin, Hko
dc.contributor.authorJeon, JUko
dc.contributor.authorPak, YEko
dc.contributor.authorColla, ELko
dc.contributor.authorSetter, Nko
dc.contributor.authorKim, Eko
dc.contributor.authorNo, Kwangsooko
dc.date.accessioned2008-11-18T05:31:00Z-
dc.date.available2008-11-18T05:31:00Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2001-01-
dc.identifier.citationJOURNAL OF APPLIED PHYSICS, v.89, no.2, pp.1377 - 1386-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10203/7851-
dc.description.abstractThe contrast mechanisms of domain imaging experiments assisted by atomic force microscope (AFM) have been investigated by model experiments on nonpiezoelectric (silicon oxide) and piezoelectric [Pb(Zr,Ti)O-3] thin films. The first step was to identify the electrostatic charge effects between the tip, the cantilever, and the sample surface. The second step was to explore the tip-sample piezoelectric force interaction. The static deflection of the cantilever was measured as a function of dc bias voltage (V-dc) applied to the bottom electrode (n-type Si wafers) for noncontact and contact modes. In addition, a small ac voltage (V-ac sin omegat) was applied to the tip to measure the amplitude (A(omega)) and phase (Phi (omega)) of the first harmonic (omega) signal as a function of V-dc. By changing from the noncontact to the contact mode, a repulsive contribution to the static deflection was found in addition to the attractive one and a 180 degrees phase shift in Phi (omega) was observed. These results imply that in the contact mode the cantilever buckling is induced by the capacitive force between the cantilever and the sample surface. This interaction adds to the tip-sample piezoelectric interaction thereby overlapping the obtained tip vibration signal. Therefore, the antiparallel ferroelectric domain images obtained at zero dc bias voltage will show a variation in A(omega) but a negligible one in Phi (omega). The capacitive force contribution to the tip vibration signal was further verified in piezoelectric hysteresis loop measurement assisted by the AFM. The observed vertical offset of the loops was explained by the contact potential difference between the cantilever and the bottom electrode. The shape of the curve could be explained by the capacitive force interaction combined with the tip-sample piezoelectric interaction. The experimental results obtained in this study support the interpretation of the cantilever-sample capacitive force contribution to the tip vibration signal in ferroelectric domain imaging experiments using AFM as a probing tool. The use of a large area top electrode between the tip and the sample resulted in the elimination of the electrostatic cantilever-sample interaction with negligible degradation of the domain contrast. This method proved to be successful because the cantilever-sample interaction was hardly detected and only the tip-sample interaction was observed. (C) 2001 American Institute of Physics.-
dc.description.sponsorshipSamsung Electronics, Incen
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherAMER INST PHYSICS-
dc.subjectTHIN-FILM CAPACITORS-
dc.subjectFATIGUE-
dc.titlePrinciple of ferroelectric domain imaging using atomic force microscope-
dc.typeArticle-
dc.identifier.wosid000166144400078-
dc.identifier.scopusid2-s2.0-0001303923-
dc.type.rimsART-
dc.citation.volume89-
dc.citation.issue2-
dc.citation.beginningpage1377-
dc.citation.endingpage1386-
dc.citation.publicationnameJOURNAL OF APPLIED PHYSICS-
dc.identifier.doi10.1063/1.1331654-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorHong, Daniel Seungbum-
dc.contributor.localauthorNo, Kwangsoo-
dc.contributor.nonIdAuthorWoo, J-
dc.contributor.nonIdAuthorShin, H-
dc.contributor.nonIdAuthorJeon, JU-
dc.contributor.nonIdAuthorPak, YE-
dc.contributor.nonIdAuthorColla, EL-
dc.contributor.nonIdAuthorSetter, N-
dc.contributor.nonIdAuthorKim, E-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusTHIN-FILM CAPACITORS-
dc.subject.keywordPlusFATIGUE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 287 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0