Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties

Cited 176 time in webofscience Cited 188 time in scopus
  • Hit : 239
  • Download : 0
The microstructural change of supersaturated austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C alloy on ageing at 823 K has been investigated by transmission electron microscopy (TEM) and X-ray diffraction. Efforts to correlate the modulation wavelength behavior with mechanical proper ties in the process of spinodal decomposition leading to the cubic kappa'-carbide (Fe,Mn)(3)AlCx formation have been made. In parallel with the modulation wavelength coarsening behavior, both the microhardness and the tensile strength increase in two stages during ageing. The first stage strengthening coincides wi th the slow growth spinodal decomposition, while the second occurs at the Lifshitz-Slyozov-Wagner (LSW) growth stage of ordered kappa' particles. By the optimal ageing treatment of the alloy, a high yield strength up to 1080 MPa with an excellent 31.5% elongation can be attained. After further ageing, the alloy softened rapidly, and its elongation deteriorated drastically due to the formation of the grain boundary lamellar colonies composed of discontinuously coarsened kappa carbide and transformed alpha ferrite phases. (C) 1997 Acta Metallurgica Inc.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
1997
Language
English
Article Type
Article
Keywords

NI-FE ALLOYS; AL-C ALLOYS; MODULATED STRUCTURE; PHASE-TRANSITIONS; KINETICS; NICKEL; MORPHOLOGY; NUCLEATION; SEPARATION; TEM

Citation

ACTA MATERIALIA, v.45, no.12, pp.4877 - 4885

ISSN
1359-6454
DOI
10.1016/S1359-6454(97)00201-2
URI
http://hdl.handle.net/10203/73011
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 176 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0