MODELING OF THE DYNAMICS OF HGCDTE GROWTH BY THE VERTICAL BRIDGMAN METHOD

Cited 65 time in webofscience Cited 0 time in scopus
  • Hit : 326
  • Download : 0
The transients in vertical Bridgman growth of nondilute alloys of HgCdTe are studied by numerical integration of the time-dependent equations for momentum, solute and energy transport and the conditions for the evolution of the melt/crystal interface according to the pseudo-binary phase diagram. The stabilizing axial density gradient caused by the rejection of heavier HgTe at the interface damps convection driven by the radial temperature gradients and by the density inversion at low CdTe concentrations. For typical conditions of crystal growth in small ampoules, the temperature and solute fields are controlled by conduction and diffusion, respectively. The major effects of the nondilute alloy are to increase the deflection of the solidification interface caused by the differences in thermal conductivities in the system and to couple the evolution of the crystal growth rate with the composition field to the long time scale for equilibration of the solute field at the start of growth. The evolution in time of the flow field from the structure driven entirely by the temperature field to the weaker thermosolutal flow is demonstrated for terrestrial growth and lower gravity conditions. The importance of the ampoule translation rate and ampoule size on the predictions for solute segregation is emphasized.
Publisher
ELSEVIER SCIENCE BV
Issue Date
1991-11
Language
English
Article Type
Article
Keywords

DIRECTIONALLY SOLIDIFIED HGCDTE; CADMIUM MERCURY TELLURIDE; FINITE-ELEMENT ANALYSIS; DILUTE BINARY-ALLOYS; CRYSTAL-GROWTH; INTERFACE SHAPE; COMPOSITIONAL VARIATIONS; STOCKBARGER TECHNIQUE; THERMAL-CONDUCTIVITY; NATURAL-CONVECTION

Citation

JOURNAL OF CRYSTAL GROWTH, v.114, no.3, pp.411 - 434

ISSN
0022-0248
URI
http://hdl.handle.net/10203/67210
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 65 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0