(A) study on the atomic layer deposition mechanism and characteristics of Ti-N,Ti-Si-N films deposited by cycle­CVD = Cycle-CVD 법으로 증착된 Ti-N, Ti-Si-N 박막의 ALD 증착기구와 특성에 관한 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 462
  • Download : 0
Cu is considered as the most promising alternative to Al-based alloy for the interconnection materials in Si-based intergrated circuits due to its low resistivity and superior resistance to electromigration and stress voiding. However, one of the major drawbacks of Cu is its fast diffusion/drift in Si and most commonly used dielectrics, resulting in deterioration of devices at low temperatures. Hence, a diffusion barrier is necessary between Cu and Si. In this paper, as Cu diffusion barriers, titanium-nitride (Ti-N) and titanium-silicon-nitride (Ti-Si-N) films have been successfully grown by atomic layer deposition (ALD). The film growth kinetics were studied using the concept of ALD and also excellent film characteristics were confirmed. As a preliminary experiment, Ti-N ALD on $SiO_2$ at the substrate temperature of 200℃ has been investigated by alternate supply of reactant sources, $Ti[N(C_2H_5CH_3)_2]_4$ [tetrakis(ethylmethylamino)titanium: TEMAT] and $NH_3$. Ti-N deposition thickness/cycle was s turated at around 1.6 mono-layers per cycle (ML/cycle) with sufficient pulse times of reactant gases at 200℃. The results suggest that Ti-N deposition thickness/cycle could exceed 1 ML/cycle in ALD, and are explained by the re-adsorption mechanism of the reactant gases. An ideal linear relationship between number of cycles and Ti-N film deposition thickness was confirmed. Step coverage was excellent, particles may be caused by the gas phase reactions between TEMAT and $NH_3$ were almost absent because TEMAT was separated from $NH_3$ by the Ar pulse. In spite of relatively low deposition temperature, carbon impurity in ALD Ti-N films was incorporated below 4 at.% compared with above 25 at.% in MOCVD Ti-N films. With the ALD concept from Ti-N ALD using TEMAT and $NH_3$, Ti-Si-N thin films have been grown by ALD using a sequential supply of $Ti[N(CH_3)_2]_4$ [tetrakis(dimethylamido) titanium: TDMAT], ammonia and silane at the substrate temperature of 180℃ and th...
Kang, Sang-Wonresearcher강상원researcher
한국과학기술원 : 재료공학과,
Issue Date
155987/325007 / 000955126

학위논문(박사) - 한국과학기술원 : 재료공학과, 1999.8, [ xi, 110 p. ]


Ti-N; Ti-Si-N; ALD; Adsorption; 확산방지막; 증착기구; 흡착; 원자층증착; Diffusion barrier

Appears in Collection
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0