Mott neurons with dual thermal dynamics for spatiotemporal computing

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 3
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Gwangminko
dc.contributor.authorIn, Jae Hyunko
dc.contributor.authorLee, Younghyunko
dc.contributor.authorRhee, Hakseungko
dc.contributor.authorPark, Woojoonko
dc.contributor.authorSong, Hanchanko
dc.contributor.authorPark, Juseongko
dc.contributor.authorJeon, Jae Bumko
dc.contributor.authorBrown, Timothy D.ko
dc.contributor.authorTalin, A. Alecko
dc.contributor.authorKumar, Suhasko
dc.contributor.authorKim, Kyung Minko
dc.date.accessioned2024-09-13T00:00:10Z-
dc.date.available2024-09-13T00:00:10Z-
dc.date.created2024-09-13-
dc.date.issued2024-09-
dc.identifier.citationNATURE MATERIALS, v.23, no.9-
dc.identifier.issn1476-1122-
dc.identifier.urihttp://hdl.handle.net/10203/322980-
dc.description.abstractHeat dissipation is a natural consequence of operating any electronic system. In nearly all computing systems, such heat is usually minimized by design and cooling. Here, we show that the temporal dynamics of internally produced heat in electronic devices can be engineered to both encode information within a single device and process information across multiple devices. In our demonstration, electronic NbOx Mott neurons, integrated on a flexible organic substrate, exhibit 18 biomimetic neuronal behaviours and frequency-based nociception within a single component by exploiting both the thermal dynamics of the Mott transition and the dynamical thermal interactions with the organic substrate. Further, multiple interconnected Mott neurons spatiotemporally communicate purely via heat, which we use for graph optimization by consuming over 106 times less energy when compared with the best digital processors. Thus, exploiting natural thermal processes in computing can lead to functionally dense, energy-efficient and radically novel mixed-physics computing primitives. Heat in electronic devices is normally dissipated via cooling. Here the authors engineer the thermal dynamics of the Mott transition and dynamical thermal interactions with the substrate to enable neuromorphic computing in a NbOx-based device.-
dc.languageEnglish-
dc.publisherNATURE PORTFOLIO-
dc.titleMott neurons with dual thermal dynamics for spatiotemporal computing-
dc.typeArticle-
dc.identifier.wosid001249371200001-
dc.identifier.scopusid2-s2.0-85196314131-
dc.type.rimsART-
dc.citation.volume23-
dc.citation.issue9-
dc.citation.publicationnameNATURE MATERIALS-
dc.identifier.doi10.1038/s41563-024-01913-0-
dc.contributor.localauthorKim, Kyung Min-
dc.contributor.nonIdAuthorBrown, Timothy D.-
dc.contributor.nonIdAuthorTalin, A. Alec-
dc.contributor.nonIdAuthorKumar, Suhas-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNOCICEPTORS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0