Tunable Doping Strategy for Few-Layer MoS2 Field-Effect Transistors via NH3 Plasma Treatment

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 6
  • Download : 0
Molybdenum disulfide (MoS2) is a promising candidate for next-generation transistor channel materials, boasting outstanding electrical properties and ultrathin structure. Conventional ion implantation processes are unsuitable for atomically thin two-dimensional (2D) materials, necessitating nondestructive doping methods. We proposed a novel approach: tunable n-type doping through sulfur vacancies (VS) and p-type doping by nitrogen substitution in MoS2, controlled by the duration of NH3 plasma treatment. Our results reveal that NH3 plasma exposure of 20 s increases the 2D sheet carrier density (n2D) in MoS2 field-effect transistors (FETs) by +4.92 × 1011 cm-2 at a gate bias of 0 V, attributable to sulfur vacancy generation. Conversely, treatment of 40 s reduces n2D by −3.71 × 1011 cm-2 due to increased nitrogen doping. X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence analyses corroborate these electrical characterization results, indicating successful n- and p-type doping. Temperature-dependent measurements show that the Schottky barrier height at the metal-semiconductor contact decreases by −31 meV under n-type conditions and increases by +37 meV for p-type doping. This study highlights NH3 plasma treatment as a viable doping method for 2D materials in electronic and optoelectronic device engineering.
Publisher
AMER CHEMICAL SOC
Issue Date
2024-08
Language
English
Article Type
Article; Early Access
Citation

ACS APPLIED MATERIALS & INTERFACES, v.16, no.33, pp.43849 - 43859

ISSN
1944-8244
DOI
10.1021/acsami.4c08549
URI
http://hdl.handle.net/10203/322974
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0