Stabilizing a lithium metal anode through the sustainable release of a multi-functional AgNO3 additive

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 9
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Hyeonmukko
dc.contributor.authorKim, TaeHeeko
dc.contributor.authorHwang, Gyuseongko
dc.contributor.authorShin, Geun Hyeongko
dc.contributor.authorLee, Junhoko
dc.contributor.authorKim, Gyungtaeko
dc.contributor.authorCho, EunAeko
dc.date.accessioned2024-09-02T05:00:11Z-
dc.date.available2024-09-02T05:00:11Z-
dc.date.created2024-08-29-
dc.date.issued2024-03-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.484-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/322515-
dc.description.abstractDespite their low redox potential and high specific capacity, lithium (Li) metal anodes pose stability and safety issues, especially in commercial carbonate-based electrolytes, due to dendritic growth of Li and formation of unstable solid-electrolyte interphase (SEI). To address these, we adopted AgNO3 as an electrolyte additive in carbonate-based electrolyte. Given that AgNO3 has low solubility in carbonate electrolytes, we developed a porous film made of silver nitrate (AgNO3)-containing polyacrylonitrile (PAN) nanofibers (AgNO3/PAN) enabling the sustainable release of Ag+ and NO3 into the electrolyte. AgNO3 acts as a multifunctional electrolyte additive, Ag+ serving as a nucleation seed for uniform and dendrite free Li plating, and NO3- forming a highly Li+-ion-conductive Li3N-rich SEI. As a verification of these effects, the cycle life of a Li parallel to Li symmetric cell increased and a full cell (Li parallel to LCO) shows an excellent capacity retention of 85.8 % after 100 charge-discharge cycles (@0.54C). Our findings suggest that AgNO3 can be a promising electrolyte additive in high-voltage lithium metal batteries.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleStabilizing a lithium metal anode through the sustainable release of a multi-functional AgNO3 additive-
dc.typeArticle-
dc.identifier.wosid001183494900001-
dc.identifier.scopusid2-s2.0-85185325483-
dc.type.rimsART-
dc.citation.volume484-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2024.149510-
dc.contributor.localauthorCho, EunAe-
dc.contributor.nonIdAuthorHwang, Gyuseong-
dc.contributor.nonIdAuthorShin, Geun Hyeong-
dc.contributor.nonIdAuthorLee, Junho-
dc.contributor.nonIdAuthorKim, Gyungtae-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorLithium metal anode-
dc.subject.keywordAuthorCarbonate-based electrolyte-
dc.subject.keywordAuthorElectrolyte Additive-
dc.subject.keywordAuthorAgNO3-
dc.subject.keywordAuthorPolyacrylonitrile-
dc.subject.keywordPlusRECHARGEABLE BATTERIES-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusSOLVATION-
dc.subject.keywordPlusIONS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0