Learning whole-body manipulation for quadrupedal robot사족 보행 로봇을 위한 전신 조작 학습

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 1
  • Download : 0
We propose a learning-based system for enabling quadrupedal robots to manipulate large, heavy objects using their whole body. Our system is based on a hierarchical control strategy that uses the deep latent variable embedding which captures manipulation-relevant information from interactions, proprioception, and action history, allowing the robot to implicitly understand object properties. We evaluate our framework in both simulation and real-world scenarios. In the simulation, it achieves a success rate of 93.6 % in accurately re-positioning and re-orienting various objects within a tolerance of 0.03 m and 5 ◦. Real-world experiments demonstrate the successful manipulation of objects such as a 19.2 kg water-filled drum and a 15.3 kg plastic box filled with heavy objects while the robot weighs 27 kg. Unlike previous works that focus on manipulating small and light objects using prehensile manipulation, our framework illustrates the possibility of using quadrupeds for manipulating large and heavy objects that are ungraspable with the robot’s entire body. Our method does not require explicit object modeling and offers significant computational efficiency compared to optimization-based methods. The video can be found at https://youtu.be/fO_PVr27QxU.
Advisors
황보제민researcher
Description
한국과학기술원 :기계공학과,
Publisher
한국과학기술원
Issue Date
2024
Identifier
325007
Language
eng
Description

학위논문(석사) - 한국과학기술원 : 기계공학과, 2024.2,[iv, 25 p. :]

Keywords

강화학습▼a보행 로봇▼a심층 학습 방법; Reinforcement learning▼aLegged robots▼aDeep learning methods

URI
http://hdl.handle.net/10203/321285
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=1095873&flag=dissertation
Appears in Collection
ME-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0