Improved resistance to water poisoning of Pd/CeO2 monolithic catalysts by heat treatment for ozone decomposition

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 49
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRyu, Seung-Heeko
dc.contributor.authorKim, Giyeongko
dc.contributor.authorGupta, Suchitrako
dc.contributor.authorBhattacharjee, Satadeepko
dc.contributor.authorLee, Seung-Cheolko
dc.contributor.authorLee, Hyunjooko
dc.contributor.authorChoi, Joon-Hwanko
dc.contributor.authorJeong, Hojinko
dc.date.accessioned2024-06-14T07:00:19Z-
dc.date.available2024-06-14T07:00:19Z-
dc.date.created2024-06-14-
dc.date.created2024-06-14-
dc.date.issued2024-04-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.485-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/319771-
dc.description.abstractDurability is a crucial requirement in heterogeneous catalysis; however, many catalysts suffer from severe deactivation in humid conditions due to water poisoning. Ozone, as a significant air pollutant, should be efficiently removed through catalytic decomposition, making it imperative to develop a water-tolerant monolithic catalyst for practical air purification. In this study, we present highly durable Pd/CeO2 monolithic catalysts resistant to water poisoning achieved through a simple heat treatment of the ceria support. The heat treatment controlled the ceria surface properties, including oxygen vacancy defects, surface oxygen, and basicity, thereby improving resistance to water poisoning. When Pd/CeO2 monolithic catalysts were used in bench-scale ozone decomposition under humid conditions, the catalyst heat-treated at 900 degrees C exhibited superior performance without experiencing deactivation due to water poisoning. Modulating the ceria surface properties plays a pivotal role in enhancing water resistance, and heat-treated Pd/CeO2 monolithic catalysts stand as a promising candidate for practical ozone decomposition in air purification applications.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleImproved resistance to water poisoning of Pd/CeO2 monolithic catalysts by heat treatment for ozone decomposition-
dc.typeArticle-
dc.identifier.wosid001205171200001-
dc.identifier.scopusid2-s2.0-85186455470-
dc.type.rimsART-
dc.citation.volume485-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2024.149487-
dc.contributor.localauthorLee, Hyunjoo-
dc.contributor.nonIdAuthorRyu, Seung-Hee-
dc.contributor.nonIdAuthorKim, Giyeong-
dc.contributor.nonIdAuthorGupta, Suchitra-
dc.contributor.nonIdAuthorBhattacharjee, Satadeep-
dc.contributor.nonIdAuthorLee, Seung-Cheol-
dc.contributor.nonIdAuthorChoi, Joon-Hwan-
dc.contributor.nonIdAuthorJeong, Hojin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCatalyst durability-
dc.subject.keywordAuthorWater poisoning-
dc.subject.keywordAuthorHeat treatment-
dc.subject.keywordAuthorCeria surface-
dc.subject.keywordAuthorPd/CeO2 monolith-
dc.subject.keywordAuthorPractical ozone decomposition-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusCERIA-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOMBUSTION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusPALLADIUM-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0