Impact of Local Microenvironments on the Selectivity of Electrocatalytic Nitrate Reduction in a BPM‐MEA System

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 45
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHuang, Po‐Weiko
dc.contributor.authorSong, Hakhyeonko
dc.contributor.authorYoo, Jaeyoungko
dc.contributor.authorHaro, Danae A. Chipocoko
dc.contributor.authorLee, Hyuck-Moko
dc.contributor.authorMedford, Andrew J.ko
dc.contributor.authorHatzell, Marta C.ko
dc.date.accessioned2024-06-10T15:00:27Z-
dc.date.available2024-06-10T15:00:27Z-
dc.date.created2024-06-10-
dc.date.created2024-06-10-
dc.date.issued2024-02-
dc.identifier.citationAdvanced Energy Materials-
dc.identifier.issn1614-6832-
dc.identifier.urihttp://hdl.handle.net/10203/319726-
dc.description.abstractElectrochemical nitrate reduction reaction (NO3RR) has garnered increasing attention as a pathway for converting a harmful pollutant (nitrate) into a value-added product (ammonia). However, high selectivity toward ammonia (NH3) is imperative for process viability. Optimizing proton availability near the catalyst is important for achieving selective NH3 production. Here, the aim is to systematically examine the impacts of proton availability on NO3RR selectivity in a bipolar membrane (BPM)-based membrane electrode assembly (MEA) system. The BPM generates a proton flux from the membrane toward the catalyst during electrolysis. Thus, the BPM-MEA system can modulate the proton flux during operation. The impact of interposer layers, proton scavenging electrolytes (CO32-), and catalyst configurations are also examined to identify which local microenvironments favor ammonia formation. It is found that a moderate proton supply allows for an increase in ammonia yield by 576% when compared to the standard MEA setup. This also results in a high selectivity of 26 (NH3 over NO2-) at an applied current density of 200 mA cm-2.-
dc.languageEnglish-
dc.publisherWiley-
dc.titleImpact of Local Microenvironments on the Selectivity of Electrocatalytic Nitrate Reduction in a BPM‐MEA System-
dc.typeArticle-
dc.identifier.wosid001164379600001-
dc.identifier.scopusid2-s2.0-85185187728-
dc.type.rimsART-
dc.citation.publicationnameAdvanced Energy Materials-
dc.identifier.doi10.1002/aenm.202304202-
dc.contributor.localauthorLee, Hyuck-Mo-
dc.contributor.nonIdAuthorHuang, Po‐Wei-
dc.contributor.nonIdAuthorSong, Hakhyeon-
dc.contributor.nonIdAuthorHaro, Danae A. Chipoco-
dc.contributor.nonIdAuthorMedford, Andrew J.-
dc.contributor.nonIdAuthorHatzell, Marta C.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordAuthorbipolar membrane-
dc.subject.keywordAuthorelectrochemical nitrate reduction-
dc.subject.keywordAuthorhydrogen-
dc.subject.keywordAuthormembrane electrode assembly-
dc.subject.keywordAuthorproduct selectivity-
dc.subject.keywordPlusCO2 ELECTROREDUCTION-
dc.subject.keywordPlusBIPOLAR MEMBRANE-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusPERSPECTIVES-
dc.subject.keywordPlusELECTROLYTE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0