Bio-Inspired Organic Synaptor with in-situ ion-Doped Ultrathin Polyelectrolyte Containing Acetylcholine-like Cation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 57
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYu, Ji-Manko
dc.contributor.authorKim, You-Sonko
dc.contributor.authorLee, Chang-Hyeonko
dc.contributor.authorJeong, Boo-Seokko
dc.contributor.authorKim, Jin-Kiko
dc.contributor.authorHan, Joon-Kyuko
dc.contributor.authorYang, Jung-Yeongko
dc.contributor.authorYun, Seong-Yunko
dc.contributor.authorIm, Sung-Gapko
dc.contributor.authorChoi, Yang-Kyuko
dc.date.accessioned2024-04-17T13:00:24Z-
dc.date.available2024-04-17T13:00:24Z-
dc.date.created2024-02-26-
dc.date.created2024-02-26-
dc.date.issued2024-07-
dc.identifier.citationSmall-
dc.identifier.issn1613-6810-
dc.identifier.urihttp://hdl.handle.net/10203/319087-
dc.description.abstractAn ion-based synaptic transistor (synaptor) is designed to emulate a biological synapse using controlled ion movements. However, developing a solid-state electrolyte that can facilitate ion movement while achieving large-scale integration remains challenging. Here, a bio-inspired organic synaptor (BioSyn) with an in situ ion-doped polyelectrolyte (i-IDOPE) is demonstrated. At the molecular scale, a polyelectrolyte containing the tert-amine cation, inspired by the neurotransmitter acetylcholine is synthesized using initiated chemical vapor deposition (iCVD) with in situ doping, a one-step vapor-phase deposition used to fabricate solid-state electrolytes. This method results in an ultrathin, but highly uniform and conformal solid-state electrolyte layer compatible with large-scale integration, a form that is not previously attainable. At a synapse scale, synapse functionality is replicated, including short-term and long-term synaptic plasticity (STSP and LTSP), along with a transformation from STSP to LTSP regulated by pre-synaptic voltage spikes. On a system scale, a reflex in a peripheral nervous system is mimicked by mounting the BioSyns on various substrates such as rigid glass, flexible polyethylene naphthalate, and stretchable poly(styrene-ethylene-butylene-styrene) for a decentralized processing unit. Finally, a classification accuracy of 90.6% is achieved through semi-empirical simulations of MNIST pattern recognition, incorporating the measured LTSP characteristics from the BioSyns.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleBio-Inspired Organic Synaptor with in-situ ion-Doped Ultrathin Polyelectrolyte Containing Acetylcholine-like Cation-
dc.typeArticle-
dc.identifier.wosid001171886200001-
dc.identifier.scopusid2-s2.0-85185966222-
dc.type.rimsART-
dc.citation.publicationnameSmall-
dc.identifier.doi10.1002/smll.202312283-
dc.contributor.localauthorIm, Sung-Gap-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorHan, Joon-Kyu-
dc.contributor.nonIdAuthorYang, Jung-Yeong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordAuthoracetylcholine-like cation-
dc.subject.keywordAuthorbio-inspired organic synaptic transistor-
dc.subject.keywordAuthorinitiated chemical vapor deposition (iCVD)-
dc.subject.keywordAuthorin situ ion doping-
dc.subject.keywordAuthorpolyelectrolyte-
dc.subject.keywordPlusVAPOR-DEPOSITION ICVD-
dc.subject.keywordPlusTHIN-FILMS-
Appears in Collection
CBE-Journal Papers(저널논문)EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0