Indefinite and bidirectional near-infrared nanocrystal photoswitching

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 49
  • Download : 0
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging(1-4), nanophotonics(5), and optical data storage(6,7), to targeted pharmacology, optogenetics, and chemical reactivity(8). These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles(6,9) can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening(10-13) and photobrightening(12,14-16), we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-A localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.
Publisher
Nature Research
Issue Date
2023-06
Language
English
Article Type
Article; Early Access
Citation

Nature, v.618, no.7967, pp.951 - 958

ISSN
0028-0836
DOI
10.1038/s41586-023-06076-7
URI
http://hdl.handle.net/10203/318484
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0