Optimal Real-Time Scheduling on Two-Type Heterogeneous Multicore Platforms

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 96
  • Download : 0
Motivated by the cutting-edge two-type heterogeneous multicore chips, such as ARM's big.LITTLE, that offer a practical support for migration, this paper studies the global (or fully-migrative) approach to two-type heterogeneous multicore scheduling. Our goal is to design an optimal fully-migrative scheduling framework. To achieve this goal in an efficient and simple manner, we break the scheduling problem into two subproblems: workload assignment and schedule generation. We propose a per-cluster workload assignment algorithm, called Hetero-Split, that determines the fractions of workload of each task to be assigned to both clusters without losing feasibility with the complexity of O(n log n), where n is the number of tasks. Furthermore, it provides a couple of important properties (e.g., a dual property) that help to generate an optimal schedule efficiently. We also derive scheduling guidelines to design optimal schedulers for two-type heterogeneous multicore platforms, called Hetero-Fair. By tightly coupling the solutions of Hetero-Split and Hetero-Fair, we develop the first optimal two-type heterogeneous multicore scheduling algorithm, called Hetero-Wrap, that has the same complexity (O(n)) as in the identical multicore case. Finally, concerning a practical point of view, we derive the first bounds on the numbers of intra-and inter-cluster migrations under two-type heterogeneous multicore scheduling, respectively.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2015-12
Language
English
Citation

36th IEEE Real-Time Systems Symposium, RTSS 2015, pp.119 - 129

ISSN
1052-8725
DOI
10.1109/RTSS.2015.19
URI
http://hdl.handle.net/10203/313126
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0