Unravelling the mechanistic pathway of the Ni5P4/NiSe heterojunction for catalyzing the urea-rich water oxidation

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 92
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorXu, Xiujuanko
dc.contributor.authorXu, Liangliangko
dc.contributor.authorWei, Xiaotongko
dc.contributor.authorHuang, Minghuako
dc.contributor.authorToghan, Arafatko
dc.date.accessioned2023-08-07T08:00:17Z-
dc.date.available2023-08-07T08:00:17Z-
dc.date.created2023-08-07-
dc.date.issued2023-08-
dc.identifier.citationMATERIALS TODAY PHYSICS, v.36-
dc.identifier.issn2542-5293-
dc.identifier.urihttp://hdl.handle.net/10203/311196-
dc.description.abstractDesigning cost-effective and high-active urea oxidation reaction (UOR) catalysts through interface engineering is highly imperative for the hydrogen economy. Unfortunately, the majority of reported studies focus on empirical exploration and seldom elucidate the modulation principle of interface engineering on the electronic structure for optimizing the catalytic UOR activity, hindering the rational construction of high-performance catalysts. In response, the Ni5P4/NiSe nanoplates with abundant interfaces are experimentally fabricated on the macroporous Ni foam substrate. The density functional theory (DFT) predictions decipher accelerated charge transmission at the Ni5P4/NiSe interfacial area, accompanied by the formation of a moderate d-band center. Subsequently, the dehydrogenation dynamics of the Ni5P4/NiSe heterojunction is effectively improved during the stepwise UOR process. As expected, the elaborate Ni5P4/NiSe exhibits outstanding UOR activity under tough environments (6.0 M KOH with urine or 0.5 M urea), further corroborating its prospects as excellent UOR catalysts for industrial applications.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleUnravelling the mechanistic pathway of the Ni5P4/NiSe heterojunction for catalyzing the urea-rich water oxidation-
dc.typeArticle-
dc.identifier.wosid001032675600001-
dc.identifier.scopusid2-s2.0-85161982021-
dc.type.rimsART-
dc.citation.volume36-
dc.citation.publicationnameMATERIALS TODAY PHYSICS-
dc.identifier.doi10.1016/j.mtphys.2023.101148-
dc.contributor.localauthorXu, Liangliang-
dc.contributor.nonIdAuthorXu, Xiujuan-
dc.contributor.nonIdAuthorWei, Xiaotong-
dc.contributor.nonIdAuthorHuang, Minghua-
dc.contributor.nonIdAuthorToghan, Arafat-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorInterface engineering-
dc.subject.keywordAuthorNiSe heterojunction-
dc.subject.keywordAuthorElectronic structure-
dc.subject.keywordAuthorUrea oxidation reaction-
dc.subject.keywordAuthorLarge current densities-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0