Non-local haze propagation with an Iso-depth prior

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 43
  • Download : 0
The primary challenge for removing haze from a single image is lack of decomposition cues between the original light transport and airlight scattering in a scene. Many dehazing algorithms start from an assumption on natural image statistics to estimate airlight from sparse cues. The sparsely estimated airlight cues need to be propagated according to the local density of airlight in the form of a transmission map, which allows us to obtain a haze-free image by subtracting airlight from the hazy input. Traditional airlight-propagation methods rely on ordinary regularization on a grid random field, which often results in isolated haze artifacts when they fail in estimating local density of airlight properly. In this work, we propose a non-local regularization method for dehazing by combining Markov random fields (MRFs) with nearest-neighbor fields (NNFs) extracted from the hazy input using the PatchMatch algorithm. Our method starts from the insightful observation that the extracted NNFs can associate pixels at the similar depth. Since regional haze in the atmosphere is correlated with its depth, we can allow propagation across the iso-depth pixels with the MRF-based regularization problem with the NNFs. Our results validate how our method can restore a wide range of hazy images of natural landscape clearly without suffering from haze isolation artifacts. Also, our regularization method is directly applicable to various dehazing methods.
Publisher
Springer Verlag
Issue Date
2019-02
Language
English
Citation

12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2017, pp.213 - 238

ISSN
1865-0929
DOI
10.1007/978-3-030-12209-6_11
URI
http://hdl.handle.net/10203/310229
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0