CNN-Based Image Quality Classification Considering Quality Degradation in Bridge Inspection Using an Unmanned Aerial Vehicle

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 98
  • Download : 0
Key information for the maintenance and diagnosis of structures including bridges can be obtained from the processing of digital images acquired by unmanned aerial vehicle (UAV). However, low-quality images caused by various problems such as UAV movement, inspection environment, and camera parameters can lead to inappropriate structural evaluation due to the difficulty of digital image processing. Therefore, an appropriate assessment method for image quality considering the deterioration of the inspection image in the structural inspection procedure is required. In this study, a new image quality assessment (IQA) using a convolutional neural network (CNN) is proposed in consideration of various degradation factors that may occur in the structure inspection image. The first stage presents a method to obtain consistent quality against various interference factors of deterioration that may occur in inspection images. Adjusting the camera parameters minimizes the degradation of the inspection image. Subsequently, low- and high-quality images are distinguished according to the proposed image acquisition method. The second stage is the classification of the inspection dataset using the CNN-based image quality classifier model through training of data classified according to their quality. Experimental validation of the proposed method shows that the results are similar to the Human Visual System (HVS), which means subjective quality classification, and that the inspection image can be classified with more accurate and shorter processing time.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2023-01
Language
English
Article Type
Article
Citation

IEEE ACCESS, v.11, pp.22096 - 22113

ISSN
2169-3536
DOI
10.1109/ACCESS.2023.3238204
URI
http://hdl.handle.net/10203/305960
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0