Dual-Phase Stabilized Perovskite Nanowires for Reduced Defects and Longer Carrier Lifetime

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 420
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorShin, Yoo Minko
dc.contributor.authorLee, Ji Hyeonko
dc.contributor.authorKim, Geon Yeongko
dc.contributor.authorJu, Hae Meeko
dc.contributor.authorJung, Yeon Sikko
dc.contributor.authorJo, Jea Woongko
dc.contributor.authorChoi, Min-Jaeko
dc.date.accessioned2023-02-03T01:01:26Z-
dc.date.available2023-02-03T01:01:26Z-
dc.date.created2022-12-05-
dc.date.issued2023-01-
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS, v.33, no.4-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10203/304993-
dc.description.abstract1D perovskite materials are of significant interest to build a new class of nanostructures for electronic and optoelectronic applications. However, the study of colloidal perovskite nanowires (PNWs) lags far behind those of other established perovskite materials such as perovskite quantum dots and perovskite thin films. Herein, a dual-phase passivation strategy to synthesize all-inorganic PNWs with minimized surface defects is reported. The local phase transition from CsPbBr3 to CsPb2Br5 in PNWs increases the photoluminescence quantum yield, carrier lifetime, and water-resistivity, owing to the energetic and chemical passivation effect. In addition, these dual-phase PNWs are employed as an interfacial layer in perovskite solar cells (PSCs). The enhanced surface passivation results in an efficient carrier transfer in PSCs, which is a critical enabler to increase the power conversion efficiency (PCE) to 22.87%, while the device without PNWs exhibits a PCE of 20.74%. The proposed strategy provides a surface passivation platform in 1D perovskites, which can lead to the development of novel nanostructures for future optoelectronic devices.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleDual-Phase Stabilized Perovskite Nanowires for Reduced Defects and Longer Carrier Lifetime-
dc.typeArticle-
dc.identifier.wosid000888421700001-
dc.identifier.scopusid2-s2.0-85142241384-
dc.type.rimsART-
dc.citation.volume33-
dc.citation.issue4-
dc.citation.publicationnameADVANCED FUNCTIONAL MATERIALS-
dc.identifier.doi10.1002/adfm.202210155-
dc.contributor.localauthorJung, Yeon Sik-
dc.contributor.nonIdAuthorShin, Yoo Min-
dc.contributor.nonIdAuthorLee, Ji Hyeon-
dc.contributor.nonIdAuthorJu, Hae Mee-
dc.contributor.nonIdAuthorJo, Jea Woong-
dc.contributor.nonIdAuthorChoi, Min-Jae-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorall-inorganic-
dc.subject.keywordAuthorcolloidal nanowires-
dc.subject.keywordAuthordual-phase-
dc.subject.keywordAuthorperovskites-
dc.subject.keywordAuthorsolar cells-
dc.subject.keywordAuthorsurface ligands-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusCOLLOIDAL SYNTHESIS-
dc.subject.keywordPlusHALIDE PEROVSKITES-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusHIGH-QUALITY-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCSPBX3-
dc.subject.keywordPlusGROWTH-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0