Novel 3D Printed Resin Crowns for Primary Molars: In Vitro Study of Fracture Resistance, Biaxial Flexural Strength, and Dynamic Mechanical Analysis

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 231
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Nayoungko
dc.contributor.authorKim, Hoonko
dc.contributor.authorKim, Ik-Hwanko
dc.contributor.authorLee, Jihoko
dc.contributor.authorLee, Ko Eunko
dc.contributor.authorLee, Hyo-Seolko
dc.contributor.authorKim, Jee-Hwanko
dc.contributor.authorSong, Je Seonko
dc.contributor.authorShin, Yooseokko
dc.date.accessioned2022-11-07T02:01:32Z-
dc.date.available2022-11-07T02:01:32Z-
dc.date.created2022-11-07-
dc.date.created2022-11-07-
dc.date.issued2022-10-
dc.identifier.citationCHILDREN-BASEL, v.9, no.10-
dc.identifier.issn2227-9067-
dc.identifier.urihttp://hdl.handle.net/10203/299324-
dc.description.abstractThis study evaluated the fracture resistance, biaxial flexural strength (BFS), and dynamic mechanical analysis (DMA) of three-dimensional (3D) printing resins for the esthetic restoration of primary molars. Two 3D printing resins, Graphy (GP) and NextDent (NXT), and a prefabricated zirconia crown, NuSmile (NS), were tested. GP and NXT samples were 3D printed using the workflow recommended by each manufacturer. Data were collected and statistically analyzed. As a result of the fracture resistance test of 0.7-mm-thick 3D printed resin crowns with a thickness similar to that of the NS crown, there was no statistically significant difference among GP (1491.6 +/- 394.6 N), NXT (1634.4 +/- 289.3 N), and NS (1622.8 +/- 323.9 N). The BFS of GP was higher for all thicknesses than that of NXT. Both resins showed high survival probabilities (more than 90%) when subjected to 50 and 150 MPa. Through DMA, the glass transition temperatures of GP and NXT were above 120 degrees C and the rheological behavior of GP and NXT according to temperature and frequency were analyzed. In conclusion, GP and NXT showed optimum strength to withstand bite forces in children, and 3D printed resin crowns could be an acceptable option for fixed prostheses of primary teeth.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleNovel 3D Printed Resin Crowns for Primary Molars: In Vitro Study of Fracture Resistance, Biaxial Flexural Strength, and Dynamic Mechanical Analysis-
dc.typeArticle-
dc.identifier.wosid000872644800001-
dc.identifier.scopusid2-s2.0-85140643106-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue10-
dc.citation.publicationnameCHILDREN-BASEL-
dc.identifier.doi10.3390/children9101445-
dc.contributor.localauthorLee, Jiho-
dc.contributor.nonIdAuthorKim, Nayoung-
dc.contributor.nonIdAuthorKim, Hoon-
dc.contributor.nonIdAuthorKim, Ik-Hwan-
dc.contributor.nonIdAuthorLee, Ko Eun-
dc.contributor.nonIdAuthorLee, Hyo-Seol-
dc.contributor.nonIdAuthorKim, Jee-Hwan-
dc.contributor.nonIdAuthorSong, Je Seon-
dc.contributor.nonIdAuthorShin, Yooseok-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthormechanical properties-
dc.subject.keywordAuthorfracture resistance-
dc.subject.keywordAuthorbiaxial flexural strength-
dc.subject.keywordAuthordynamic mechanical analysis-
dc.subject.keywordAuthorprimary molar-
dc.subject.keywordAuthor3D printed resin crown-
dc.subject.keywordPlusBITE FORCE-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0