Before the Page Time: Maximum Entanglements or the Return of the Monster?

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 103
  • Download : 0
The conservation of information of evaporating black holes is a very natural consequence of unitarity, which is the fundamental symmetry of quantum mechanics. In order to study the conservation of information, we need to understand the nature of the entanglement entropy. The entropy of Hawking radiation is approximately equal to the maximum of entanglement entropy if a black hole is in a state before the Page time, i.e., when the entropy of Hawking radiation is smaller than the entropy of the black hole. However, if there exists a process generating smaller entanglements rather than maximal entanglements, the entropy of Hawking radiation will become smaller than the maximum of the entanglement entropy before the Page time. If this process accumulates, even though the probability is small, the emitted radiation can eventually be distinguished from the exactly thermal state. In this paper, we provide several interpretations of this phenomenon: (1) information of the collapsed matter emitted before the Page time, (2) there exists a firewall or a non-local effect before the Page time, or (3) the statistical entropy is greater than the areal entropy; a monster is formed. Our conclusion will help resolve the information loss paradox by providing groundwork for further research.
Publisher
MDPI
Issue Date
2022-08
Language
English
Article Type
Article
Citation

SYMMETRY-BASEL, v.14, no.8

ISSN
2073-8994
DOI
10.3390/sym14081649
URI
http://hdl.handle.net/10203/298344
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0