sEMG-Triggered Fast Assistance Strategy for a Pneumatic Back Support Exoskeleton

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 135
  • Download : 0
To prevent lower back pain (LBP) in the industrial workplace, various powered back support exoskeletons (BSEs) have been developed. However, conventional kinematics-triggered assistance (KA) strategies induce latency, degrading assistance efficiency. Therefore, we proposed and experimentally evaluated a surface electromyography (sEMG)-triggered assistance (EA) strategy. Nine healthy subjects participated in the lifting experiments: 1) external loads test, 2) extra latency test, and 3) repetitive lifting test. In the external loads test, subject performed lifting with four different external loads (0 kg, 7.5 kg, 15 kg, and 22.5 kg). The assistance was triggered earlier by EA compared to KA from 114 ms to 202 ms, 163 ms to 269 ms for squat and stoop lifting respectively, as external loads increased from 0 kg to 22.5 kg. In the extra latency test, the effects of extra latency (manual switch, 0 ms, 100 ms and 200 ms) in EA on muscle activities were investigated. Muscle activities were minimized in the fast assistance (0 ms and 100 ms) condition and increased with extra latency. In the repetitive lifting test, the EA strategy significantly reduced L1 muscle fatigue by 70.4% in stoop lifting, compared to KA strategy. Based on the experimental results, we concluded that fast assistance triggered by sEMG improved assistance efficiency in BSE and was particularly beneficial in heavy external loads situations. The proposed assistive strategy can be used to prevent LBP by reducing back muscle fatigue and is easily applicable to various industrial exoskeleton applications.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2022
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, v.30, pp.2175 - 2185

ISSN
1534-4320
DOI
10.1109/TNSRE.2022.3196361
URI
http://hdl.handle.net/10203/298216
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0