Molecular Engineering for Function-Tailored Interface Modifier in High-Performance Perovskite Solar Cells

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 299
  • Download : 0
Interface modification of perovskite solar cells (PSCs) has been widely explored not only to achieve defect passivation but also to facilitate charge transport and stabilize the physical/electrical contact at device interfaces. In this study, [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (CEPA) is introduced as an interface modifier at the interface of perovskite and the hole transporting material (HTM) layer into n-i-p PSCs. CEPA reduces surface traps, manipulates the surface dipole for energy-level alignment, and induces molecular interaction at the interface of the CEPA-HTM for enhanced interfacial adhesion energy and good mechanical stability. The power conversion efficiency of interface-optimized PSC is 23.6% using a 2D/3D perovskite structure, representing the highest efficiency among poly(triarylamine) HTM-based devices. The encapsulated CEPA-treated PSCs maintain nearly 90% of their initial efficiency during a damp heat lasting for more than 1530 h and retain their initial efficiency during continuous operation under illumination.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2022-07
Language
English
Article Type
Article
Citation

ADVANCED ENERGY MATERIALS, v.12, no.27

ISSN
1614-6832
DOI
10.1002/aenm.202200758
URI
http://hdl.handle.net/10203/297605
Appears in Collection
ME-Journal Papers(저널논문)CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0