Promoting Ex-Solution from Metal-Organic-Framework-Mediated Oxide Scaffolds for Highly Active and Robust Catalysts

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 671
  • Download : 0
Ex-solution catalysts, in which a host oxide is decorated with confined metallic nanoparticles, have exhibited breakthrough activity in various catalytic reactions. However, catalysts prepared by conventional ex-solution processes are limited by the low surface area of host oxides, the limited solubility of dopants, and the incomplete conversion of doped cations into metal catalysts. Here, the design of the host oxide structure is reconceptualized using a metal-organic framework (MOF) as an oxide precursor that can absorb a large quantity of ions while also promoting ex-solution at low temperatures (400-500 degrees C). The MOF-derived metal oxide host can readily incorporate metal cations, from which catalytic nanoparticles can be uniformly ex-solved owing to the short diffusion length in the nano-sized oxides. The distinct ex-solution behaviors of Pt, Pd, and Rh, and their bimetallic combinations are investigated. The MOF-driven mesoporous ZnO particles functionalized with PdPt catalysts ex-solved at 500 degrees C show benchmark-level of acetone oxidation activity as well as acetone-sensing characteristics by accelerating both oxygen chemisorption and acetone dissociation. Their findings provide a new route for the preparation of highly active catalysts by engineering the architecture and composition of the host oxide to facilitate the ex-solution process rationally.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2022-07
Language
English
Article Type
Article
Citation

ADVANCED MATERIALS, v.34, no.27

ISSN
0935-9648
DOI
10.1002/adma.202201109
URI
http://hdl.handle.net/10203/297360
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0