Next generation pure component property estimation models: With and without machine learning techniques

Cited 37 time in webofscience Cited 0 time in scopus
  • Hit : 110
  • Download : 0
Physiochemical properties of pure components serve as the basis for the design and simulation of chemical products and processes. Models based on the molecular structural information of chemicals for the following 25 pure component properties are presented in this work: (critical-) temperature, pressure, volume, acentric factor; (normal-) boiling point, melting point, auto-ignition temperature; flash point; (standard-) enthalpy of formation, Gibbs energy of formation, enthalpy of fusion, enthalpy of vaporization, liquid molar volume; (environmental-) (lethal dose-) LC50 and LD50, photo-chemical oxidation potential, bioconcentration factor, permissible exposure limit; (physicochemical-) acid dissociation constant, water-solubility, octanol-water partition coefficient, Hildebrandt solubility parameter, Hansen solubility parameters. Utilizing functional groups for molecular representation, two parallel property estimation models where the group contributions for each property are regressed through traditional regression techniques and machine learning techniques are presented. Both techniques use an a priori data analysis before regression of model parameters. A dataset with more than 24,000 chemicals for the 25 pure component properties has been utilized for the development of the two sets of property models. The efficacy of the developed models and their use are highlighted together with a discussion on the overall performance, application range, and predictive capabilities with implications to product and/or process engineering problem solutions.
Publisher
WILEY
Issue Date
2022-06
Language
English
Article Type
Article
Citation

AICHE JOURNAL, v.68, no.6

ISSN
0001-1541
DOI
10.1002/aic.17469
URI
http://hdl.handle.net/10203/296673
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0