Phase transformation mechanism and stress evolution in Sn anode

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 413
  • Download : 0
Diffusion-induced stresses in Sn, a promising anode material for Li-ion batteries owing to its high specific capacity, depend significantly on the phase transformation mechanism. In this study, an in-situ X-ray diffraction study is performed to reveal the phase transformation mechanism in Sn as functions of the discharge rate and Sn anode dimensions. In a 500 nm-thick Sn thin-film discharged at C/9 or a 100 nm-thick Sn thin-film discharged at 0.1 C, the Sn phase transforms sequentially to Li2Sn5, followed by β-LiSn and a-Li7Sn3 in three steps, where each step involves reaction-controlled lithiation. However, in a 500 nm-thick Sn thin-film discharged at 2 C or a 2 μm-thick Sn thin-film discharged at 0.1 C, the a-Li7Sn3 phase is directly formed via one-step reaction-controlled lithiation between Sn and a-Li7Sn3. A transition from three-step to one-step results in a steep gradient in the mismatch strain, thereby causing early failure. Finite element simulations show a lower J-integral for the three steps compared with that of a one-step reaction, thereby confirming previously reported experimental observations. For a specified transformation mechanism, the J-integral is lower for smaller Sn micropillars. Therefore, the mechanical reliability of the Sn anode can be enhanced significantly when lithiated under phase transformation mechanism involving three-reaction-controlled lithiations, as well as utilizing a small Sn anode measuring less than 200 nm.
Issue Date
Article Type

ENERGY STORAGE MATERIALS, v.45, pp.101 - 109

Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button


  • mendeley


rss_1.0 rss_2.0 atom_1.0