Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 269
  • Download : 0
Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies. © 2021 Wiley-VCH GmbH.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2021-10
Language
English
Article Type
Article
Citation

SMALL, v.17, no.41

ISSN
1613-6810
DOI
10.1002/smll.202102892
URI
http://hdl.handle.net/10203/291122
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0