Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 411
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBang, Su-Miko
dc.contributor.authorShin, Seong Sikko
dc.contributor.authorJeon, Nam Joongko
dc.contributor.authorKim, Young Yunko
dc.contributor.authorKim, Geunjinko
dc.contributor.authorYang, Tae-Youlko
dc.contributor.authorSeo, Jangwonko
dc.date.accessioned2021-12-03T06:41:25Z-
dc.date.available2021-12-03T06:41:25Z-
dc.date.created2021-12-03-
dc.date.issued2020-04-
dc.identifier.citationACS ENERGY LETTERS, v.5, no.4, pp.1198 - 1205-
dc.identifier.issn2380-8195-
dc.identifier.urihttp://hdl.handle.net/10203/289925-
dc.description.abstractTo extract charges more efficiently through charge-transporting layers (CTLs), various dopants are necessary. Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) is the most widely used dopant in electron- and hole-transporting layers. However, Li+ ions easily migrate into the perovskite and deteriorate the device performance. To address this issue, several efforts such as introducing a buffer layer have been tried, but the issue is still not fully resolved. Thus it is required to find a simple way without additional treatments. In this work, we propose a simple strategy to use defect-tolerant dopant in CTLs, sodium bis(trifluoromethanesulfonyl)imide (Na-TFSI), to improve both the efficiency and the stability of perovskite solar cells (PSCs). The PSCs with Na-TFSI for both the electron-transport layer and the hole-transport layer show the highest power conversion efficiency up to 22.4%. In addition, the device with Na-TFSI exhibited better long-term operating stability at 45 degrees C, maintaining >80% of the initial performance even after 500 h of continuous 1 sun illumination.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleDefect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells-
dc.typeArticle-
dc.identifier.wosid000526315900024-
dc.identifier.scopusid2-s2.0-85084753794-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue4-
dc.citation.beginningpage1198-
dc.citation.endingpage1205-
dc.citation.publicationnameACS ENERGY LETTERS-
dc.identifier.doi10.1021/acsenergylett.0c00514-
dc.contributor.localauthorSeo, Jangwon-
dc.contributor.nonIdAuthorBang, Su-Mi-
dc.contributor.nonIdAuthorShin, Seong Sik-
dc.contributor.nonIdAuthorJeon, Nam Joong-
dc.contributor.nonIdAuthorKim, Young Yun-
dc.contributor.nonIdAuthorKim, Geunjin-
dc.contributor.nonIdAuthorYang, Tae-Youl-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSPIRO-MEOTAD-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCATION-
dc.subject.keywordPlusIONS-
dc.subject.keywordPlusHYSTERESIS-
dc.subject.keywordPlusLENGTHS-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordPlusAIR-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0