Autonomous Microcapillary Drug Delivery System Self-Powered by a Flexible Energy Harvester

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 228
  • Download : 100
DC FieldValueLanguage
dc.contributor.authorGabrielsson, Erik O.ko
dc.contributor.authorJung, Young Hoonko
dc.contributor.authorHan, Jae Hyunko
dc.contributor.authorJoe, Daniel Juhyungko
dc.contributor.authorSimon, Daniel T.ko
dc.contributor.authorLee, Keon Jaeko
dc.contributor.authorBerggren, Magnusko
dc.date.accessioned2021-11-18T06:41:34Z-
dc.date.available2021-11-18T06:41:34Z-
dc.date.created2021-07-29-
dc.date.created2021-07-29-
dc.date.created2021-07-29-
dc.date.created2021-07-29-
dc.date.issued2021-11-
dc.identifier.citationADVANCED MATERIALS TECHNOLOGIES, v.6, no.11, pp.2100526-
dc.identifier.issn2365-709X-
dc.identifier.urihttp://hdl.handle.net/10203/289264-
dc.description.abstractImplantable bioelectronic devices pave the way for novel biomedical applications operating at high spatiotemporal resolution, which is crucial for neural recording and stimulation, drug delivery, and brain-machine interfaces. Before successful long-term implantation and clinical applications, these devices face a number of challenges, such as mechanical and operational stability, biocompatibility, miniaturization, and powering. To address two of these crucial challenges-miniaturization and powering-the development and characterization of an electrophoretic drug delivery device, manufactured inside fused quartz fibers (outer diameter of 125 mu m), which is self-powered by a flexible piezoelectric energy harvester, are reported. The resulting device-the first integration of piezoelectric charging with "iontronic" delivery-exhibits a high delivery efficiency (number of neurotransmitters delivered per charges applied) and a direct correlation between the piezoelectric charging and the amount delivered (number of dynamic bends versus pmols delivered).-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleAutonomous Microcapillary Drug Delivery System Self-Powered by a Flexible Energy Harvester-
dc.typeArticle-
dc.identifier.wosid000672916900001-
dc.identifier.scopusid2-s2.0-85110171142-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue11-
dc.citation.beginningpage2100526-
dc.citation.publicationnameADVANCED MATERIALS TECHNOLOGIES-
dc.identifier.doi10.1002/admt.202100526-
dc.contributor.localauthorLee, Keon Jae-
dc.contributor.nonIdAuthorGabrielsson, Erik O.-
dc.contributor.nonIdAuthorJoe, Daniel Juhyung-
dc.contributor.nonIdAuthorSimon, Daniel T.-
dc.contributor.nonIdAuthorBerggren, Magnus-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorbioelectronics-
dc.subject.keywordAuthordrug delivery-
dc.subject.keywordAuthorflexible energy harvester-
dc.subject.keywordAuthormicrocapillary-
dc.subject.keywordAuthororganic electronics-
dc.subject.keywordAuthorself-powered-
dc.subject.keywordPlusMULTIFUNCTIONAL FIBERS-
dc.subject.keywordPlusPOLYPYRROLE-
dc.subject.keywordPlusRELEASE-
dc.subject.keywordPlusELECTRONICS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
120977.pdf(2.77 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0