Antifouling membranes employing a 2D planar nanobiocatalyst of crosslinked glucose oxidase aggregates wrapping extra-large graphene oxide

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 212
  • Download : 20
This paper presents highly effective antimicrobial surfaces employing a 2D structured nanobiocatalyst composed of graphene oxide (GO) and glucose oxidase (GOD). Enzyme molecules are immobilized onto extra-large GO pieces with a plane dimension of approximately 100 mu m via an enzyme adsorption, precipitation, and crosslinking (EAPC) approach. This enables the effective wrapping of extra-large GO pieces by a matrix of crosslinked enzyme aggregates, which improves the enzyme loading. Consequently, the measured GOD activities of the EAPC sample via 50% (w/v) ammonium sulfate precipitation are 4,940 and 3,820 times higher than those of the control samples, i.e, the enzyme adsorption (EA) and enzyme adsorption/crosslinking (EAC) samples, respectively. The preservation of the planar GO geometry with an extra-large surface also allows the effective binding of EAPC onto a commercial membrane filter via a polydopamine coating, thus yielding a biocatalytic EAPC membrane. Compared to the commercial membrane with no bound EAPC, the in situ generation of H2O2 via the EAPC-catalyzed oxidation of glucose on the membrane surface demonstrated enhanced filterability against a mixed bacterial population of activated sludge obtained from a municipal sewage plant as well as two model bacteria: gram-negative Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. The bacterial decontamination of the EAPC-bound membrane surface can also be activated on demand by simply adding glucose to the bulk solution. This newly proposed mechanism of antifouling surfaces employing a localized nanobiocatalytic conversion of nontoxic glucose to bactericidal H2O2 can provide insights for biofouling control via a highly effective and environment-friendly approach.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2021-11
Language
English
Article Type
Article
Citation

CHEMICAL ENGINEERING JOURNAL, v.424, pp.130343

ISSN
1385-8947
DOI
10.1016/j.cej.2021.130343
URI
http://hdl.handle.net/10203/288966
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0