Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 89
  • Download : 83
DC FieldValueLanguage
dc.contributor.authorPark, Ki Hyunko
dc.contributor.authorKwon, Junyoungko
dc.contributor.authorJeong, Uichangko
dc.contributor.authorKim, Ji-Youngko
dc.contributor.authorKotov, Nicholas A.ko
dc.contributor.authorYeom, Jihyeonko
dc.date.accessioned2021-10-18T08:10:07Z-
dc.date.available2021-10-18T08:10:07Z-
dc.date.created2021-10-18-
dc.date.created2021-10-18-
dc.date.created2021-10-18-
dc.date.created2021-10-18-
dc.date.issued2021-09-
dc.identifier.citationACS NANO, v.15, no.9, pp.15229 - 15237-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10203/288235-
dc.description.abstractChiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR. Here, we demonstrate a versatile method to synthesize chiral copper sulfides using cysteine, as the stabilizer, and transferring the chirality from molecular- to the microscale through self-assembly. The assembled structures show broad chiroptical activity in the UV-vis-NIR-SWIR region (200-2500 nm). Importantly, we can tune the chiroptical activity by simply changing the reaction conditions. This approach can be extended to materials platforms for developing next-generation optical devices, metamaterials, telecommunications, and asymmetric catalysts.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleBroad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale-
dc.typeArticle-
dc.identifier.wosid000703553600116-
dc.identifier.scopusid2-s2.0-85116010351-
dc.type.rimsART-
dc.citation.volume15-
dc.citation.issue9-
dc.citation.beginningpage15229-
dc.citation.endingpage15237-
dc.citation.publicationnameACS NANO-
dc.identifier.doi10.1021/acsnano.1c05888-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorYeom, Jihyeon-
dc.contributor.nonIdAuthorPark, Ki Hyun-
dc.contributor.nonIdAuthorJeong, Uichang-
dc.contributor.nonIdAuthorKim, Ji-Young-
dc.contributor.nonIdAuthorKotov, Nicholas A.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorchirality-
dc.subject.keywordAuthorchiroptical activity-
dc.subject.keywordAuthorshort wave-infrared-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthornanoparticle-
dc.subject.keywordAuthormicroparticle-
dc.subject.keywordPlusCOPPER SULFIDE NANOPARTICLES-
dc.subject.keywordPlusPHOTOTHERMAL ABLATION-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusCUXS-
dc.subject.keywordPlusCUS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0