Flow-based seismic resilience assessment of urban water transmission networks

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 301
  • Download : 0
In this study, a new framework of seismic resilience estimation for urban water transmission networks was developed. The proposed resilience estimation model consists of three phases: input earthquake generation, hydraulic analysis, and recovery of network facilities. In the earthquake generation phase, the uncertainty of the ground motion is determined using the spatially correlated seismic attenuation law. In the hydraulic analysis phase, a hydraulic simulation is performed in conjunction with EPANET analysis. In the recovery phase, network components are restored, and the performance of the recovered network is evaluated through hydraulic analysis. Then, the seismic resilience curve and recovery costs are calculated. For a numerical simulation, a MATLAB-based computer code was developed for pressure-driven analysis in EPANET simulation. To demonstrate the proposed model, an actual water transmission network in South Korea was reconstructed based on geographic information system data. The performance of the network system was evaluated according to two performance indices: system and nodal serviceability. Finally, the cost of repairing the network facilities and water loss are estimated according to earthquake magnitude and interdependency. Numerical results show that the recovery slope of the resilience curve tends to decrease as the earthquake magnitude and interdependency with the power facilities increase.
Publisher
TECHNO-PRESS
Issue Date
2021-08
Language
English
Article Type
Article
Citation

STRUCTURAL ENGINEERING AND MECHANICS, v.79, no.4, pp.517 - 529

ISSN
1225-4568
DOI
10.12989/sem.2021.79.4.517
URI
http://hdl.handle.net/10203/287773
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0