Electron Transport Layers Based on Oligo(ethylene glycol)-Incorporated Polymers Enabling Reproducible Fabrication of High-Performance Organic Solar Cells

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 211
  • Download : 0
Interlayers in organic solar cells (OSCs) play a crucial role in determining their charge extraction properties, device performance, and stability. In this work, two naphthalene diimide (NDI)-based n-type polymers (P(NDIDEG-T) and P(NDITEG-T)) incorporating oligo(ethylene glycol) (OEG) side chains of different lengths are designed and used as new electron transport layers (ETLs) in OSCs. The hydrophilic OEG side chains enable the processing of these n-type polymers using eco-friendly water/ethanol mixtures. In addition, the polar OEG groups effectively modify the work function of the Ag cathode, enabling the polymers to function as efficient ETLs. Consequently, when these OEG-based ETLs are applied to PM6:Y6-based OSCs, a maximum power conversion efficiency (PCE) of 15.43% is achieved, which is substantially higher than that of a reference OSC without an ETL (9.93%) and comparable to that of an OSC with a representative high-performance PFN-Br ETL (15.34%). We demonstrate that the P(NDIDEG-T)-based OSCs show both enhanced PCEs and better reproducibility than their P(NDITEG-T)-based counterparts, which are attributed to the lower surface tension and improved film uniformity of the P(NDIDEG-T) ETL. Also, the P(NDIDEG-T) ETL realizes OSCs with higher storage stability and more thickness-tolerant performance compared to the P(NDITEG-T) and PFN-Br ETLs. Our study provides useful guidelines for the design of ETLs suitable for the fabrication of high-performance, reproducible, and stable OSCs.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-08
Language
English
Article Type
Article
Citation

MACROMOLECULES, v.54, no.15, pp.7102 - 7112

ISSN
0024-9297
DOI
10.1021/acs.macromol.1c01215
URI
http://hdl.handle.net/10203/287528
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0