Metamorphosis of Seaweeds into Multitalented Materials for Energy Storage Applications

Cited 26 time in webofscience Cited 0 time in scopus
  • Hit : 166
  • Download : 0
Transition metal ion dissolution due to hydrofluoric acid attack is a long-standing issue in the Mn-based spinel cathode materials of lithium-ion batteries (LIBs). Numerous strategies have been proposed to address this issue, but only a fragmentary solution has been established. In this study, reported is a seaweed-extracted multitalented material, namely, agar, for high-performance LIBs comprising Mn-based cathode materials at a practical loading density (23.1 mg cm(-2) for LiMn2O4 and 10.9 mg cm(-2) for LiNi0.5Mn1.5O4, respectively). As a surface modifier, 3-glycidoxypropyl trimethoxysilane (GPTMS) is employed to enable the agar to have different phase separation behaviors during the nonsolvent-induced phase separation process, thus eventually leading to the fabrication of an outstanding separator membrane that features a well-defined porous structure, superior mechanical robustness, high ionic conductivity, and good thermal stability. The GPTMS-modified agar separator membrane coupled with a pure agar binder to the LiNi0.5Mn1.5O4/graphite full cell leads to exceptional improvement in electrochemical performance outperforming binders and separator membrane in current commercial products even at 55 degrees C; this improvement is due to beneficial features such as Mn2+ chelation and PF5 stabilizing capabilities. This study is believed to provide insights into the potential energy applications of natural seaweeds.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2019-05
Language
English
Article Type
Article
Citation

ADVANCED ENERGY MATERIALS, v.9, no.19

ISSN
1614-6832
DOI
10.1002/aenm.201900570
URI
http://hdl.handle.net/10203/287288
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0